Пока не исправили — модифицируй, или Анализ расширений атаки уклонения для LLM

Все блоги / Про интернет 8 октября 2024 100   

Добрый день, уважаемые читатели Хабра. В связи с бурным развитием генеративных моделей и реализованных на них чат‑ботов (ChatGPT, Gemini, Bard, Notion AI, Compose AI, Poe, Phind) у пользователя появляется ложное чувство, что модели стали умнее, защищённее и, в целом, ближе к совершенству, сравнимы с человеческим интеллектом. Отсюда мы получаем целый пласт заблуждений. Например, что модели нас «чувствуют», «понимают», ведь мы выкладываем для них столько информации о себе, начиная от стилистики нашего письма, что уже является неким цифровым отпечатком нашей личности, и заканчивая оценкой их собственной работы. На самом деле это миф. И трендом 2023–2024 годов стало обширное внимание публики к XAI:

• как они (генеративные модели) устроены и как они принимают решения;

• как проводятся атаки уклонения (склонение моделей к неверной выдаче);

• как эти атаки (уклонения) связаны с другими атаками на LLM и какие они могут быть для эскалации деструктивного поведения системы;

• с какой позиции верно интерпретировать выход генеративной модели;

• разработка системы эшелонированной защиты моделей;

• разработка системы внутреннего критика для модели.

Для начала начнём с существующих атак и их анализа. Заинтересованных приглашаем под кат.

Читать далее
  • Оцените публикацию
  • 0

Похожие публикации

@
  • bowtiesmilelaughingblushsmileyrelaxedsmirk
    heart_eyeskissing_heartkissing_closed_eyesflushedrelievedsatisfiedgrin
    winkstuck_out_tongue_winking_eyestuck_out_tongue_closed_eyesgrinningkissingstuck_out_tonguesleeping
    worriedfrowninganguishedopen_mouthgrimacingconfusedhushed
    expressionlessunamusedsweat_smilesweatdisappointed_relievedwearypensive
    disappointedconfoundedfearfulcold_sweatperseverecrysob
    joyastonishedscreamtired_faceangryragetriumph
    sleepyyummasksunglassesdizzy_faceimpsmiling_imp
    neutral_faceno_mouthinnocent

Архив публикаций