В погоне за неизведанным: как ML-модель вредоносы искать училась
Всем привет! С вами Ксения Наумова. В Positive Technologies я исследую вредоносный сетевой трафик и совершенствую инструменты его анализа в экспертном центре безопасности. Недавно перед нами встала задача — создать ML-модель для обнаружения вредоносного ПО в сети. Причем распознавать она должна была не только уже ранее детектированное нами вредоносное ПО, но и совсем новые угрозы, которые появляются в большом количестве ежедневно. В качестве первого эксперимента решили сделать модель для работы с трафиком, который передается по протоколу HTTP, поскольку наши продукты успешно расшифровывают TLS-сессии, а внутри них частенько можно найти много интересного. В статье я подробно расскажу, как мы обучали модель, и поделюсь информацией о допущенных ошибках.
Читать далееИсточник: Хабрахабр
Похожие новости
- ИИ Агенты как новая киберугроза: бизнесы теряют деньги и данные, не понимая почему
- Архитектура PERA для построения промышленной сети
- Telegram Web съел 30% моего 16-ядерного процессора. Расследование странного поведения, или Призрак майнера в браузере
- Настройка межсетевого SSH-доступа в многосегментной сети Cisco и MikroTik в среде GNS3
- Рост продаж на маркетплейсах без демпинга: возможен или нет
- Vitamin.tools: Как быстро и эффективно находить сотрудников или собрать пожертвования через VK Ads: два кейса от клиента Vitamin.tools
- Лебедев Денис: Боты статистики в Telegram: что они умеют, кому подходят
- От BlueBorne до LE Secure: как Bluetooth выжил после самых громких дыр
- Ты не покупатель. Ты — герой мифа
- Андрей Кружков: Как я вывел сайт в ТОП за 3 месяца без копейки: честный SEO-план на коленке