Как построить безопасный MLOps-pipeline: Tier-уровни зрелости, принципы и реальные инструменты

Все блоги / Про интернет 26 июня 2025 73   

На практике продакшен-модели чаще всего «падают» из-за трёх вещей: несоответствие с инфраструктурой, дрейфа данных, и ошибочного отката/обновления версии.
Единый гайд по безопасной разработке ML-моделей — от хаотичного до полностью автоматизированного уровня зрелости.

Что внутри:

Как применять Infrastructure-as-Code для ML-кластеров и не оставлять открытые порты;

Зачем даже маленькой команде нужен Feature Store и как избежать training-serving skew;

Где прячутся CVE в ML-библиотеках и как их ловить до релиза;

Канареечный деплой с авто-откатом по метрикам и разумными порогами;

мониторинг дрейфа данных и качества модели в реальном времени;

Чек-лист DevSecOps: от тега в Model Registry до регулярных Model Review.

Материал поможет выстроить MLOps-процесс, устойчивый к атакам и сбоям, не превращая релизы моделей в ночной марафон.

Читать далее
  • Оцените публикацию
  • 0

💬 Комментарии

В связи с новыми требованиями законодательства РФ (ФЗ-152, ФЗ «О рекламе») и ужесточением контроля со стороны РКН, мы отключили систему комментариев на сайте.

🔒 Важно Теперь мы не собираем и не храним ваши персональные данные — даже если очень захотим.

💡 Хотите обсудить материал?

Присоединяйтесь к нашему Telegram-каналу:

https://t.me/blogssmartz

Нажмите кнопку ниже — и вы сразу попадёте в чат с комментариями

Похожие публикации

Архив публикаций