MLSecOps: защита машинного обучения в эпоху киберугроз
MLSecOps: защита машинного обучения в эпоху киберугроз
На днях исследователь Цзянь Чжоу сообщил о критической уязвимости (CVE-2025-32434), затрагивающей все версии PyTorch до 2.5.1 включительно. Ошибка устраняется только обновлением версии до 2.6.0. Уязвимость соответствует критическому уровню риска, и позволяет злоумышленнику выполнить произвольный код на стороне жертвы без какого-либо взаимодействия с пользователем. Единственным условием является факт загрузки модели, созданной атакующим, даже при якобы безопасном параметре weights_only=True. Эта опция ранее считалась надежной, но, как выяснилось, не спасала от угроз.
Подобные инциденты с развитием и повсеместным распространением нейронных сетей будут происходить всё чаще. Это еще один повод начать внедрение инструментов и технологий MLSecOps, даже на базовом уровне.
Всех желающих подробнее познакомиться с особенностями и перспективами направления MLSecOps, узнать про основные виды атак, базовые методы защиты и дополнительные источники для обучения, приглашаю под кат.
Читать далееИсточник: Хабрахабр
Похожие новости
- ИИ Агенты как новая киберугроза: бизнесы теряют деньги и данные, не понимая почему
- Архитектура PERA для построения промышленной сети
- Telegram Web съел 30% моего 16-ядерного процессора. Расследование странного поведения, или Призрак майнера в браузере
- Настройка межсетевого SSH-доступа в многосегментной сети Cisco и MikroTik в среде GNS3
- Рост продаж на маркетплейсах без демпинга: возможен или нет
- Vitamin.tools: Как быстро и эффективно находить сотрудников или собрать пожертвования через VK Ads: два кейса от клиента Vitamin.tools
- Лебедев Денис: Боты статистики в Telegram: что они умеют, кому подходят
- От BlueBorne до LE Secure: как Bluetooth выжил после самых громких дыр
- Ты не покупатель. Ты — герой мифа
- Андрей Кружков: Как я вывел сайт в ТОП за 3 месяца без копейки: честный SEO-план на коленке