Закон распределения делителей числа (расширенная версия)
В арифметике известны элементарные действия с числами (+), (–), (×), (/) и др., использование которых при заданных исходных данных дает нам возможность получать определенные результаты: сумму, разность, произведение, частное. Обратное действие с результатами в качестве исходных данных возможно далеко не всегда. Например, возведение в третью степень числа 7 3 = 343, обратным действием имеет извлечение из результата корня третьей степени (343)1/3= 7. При заданных результатах определить какими были исходные данные не всегда возможно. Для суммы даже двух слагаемых 7 + 6 = 13 такого единственного обратного действия нет. Для числа 13 мы можем получить очень разные исходные 13 = 1+12 = 2+11 = 3+10 = 4 +9 = 5 + 8 = 6+7.
С умножением в качестве исходных составных чисел картина похожая, но если исходными сомножителями взяты простые числа, то обратной операцией для произведения является действие, называемое факторизацией числа – результата умножения. К сожалению, на сегодняшний день действие факторизации не может быть задано какими-то простыми вычислениями, а очень большие числа – результаты (сотни цифр в описании) вообще не могут быть факторизованы. Как выполнить поиск простых делителей результата-произведения мы сегодня не знаем.
Такие делители, вообще говоря, как-то распределены в числовых рядах. Например, в натуральном ряде чисел (НРЧ) или в последовательности нечетных чисел (ПНЧ) простые числа-делители и их кратные имеют достаточно регулярные распределения, каждое со своим шагом.
Задавая произведение простых чисел N = p˖q˖h˖s, мы понимаем, что каждое из p, q, h, s меньше самого N. Если ограничить начальный фрагмент НРЧ или ПНЧ значением N, то в пределах выделенного фрагмента будут присутствовать кратные делителей с возрастающими от 1 коэффициентами (для ПНЧ коэффициенты будут нечетными). Сможем ли мы увидеть и выделить такие кратные делителей N? Они ведь нам неизвестны.
Сегодня ответ на этот вопрос положителен. В 2014 году мной на Хабре был опубликован закон распределения делителей (ЗРД) натурального числа N в НРЧ. Применение закона позволяет получать для заданного натурального N его простые делители и их кратные в НРЧ. Ниже я кратко повторю публикацию 2014 года и приведу расширенную версию ЗРД на ряд целых чисел N.
Источник: Хабрахабр
Похожие новости
- Spark_news: Уфимцы — в первых рядах: мечта о Марсе объединяет 27% россиян
- Почему «99.9% аптайма» – это не то, что вы думаете
- Spark_news: Ozon запустил автолизинг для бизнеса
- Креативное ателье Пинк: Как за 125 часов разработали 60 макетов и доработали концепцию | Поддержали дизайном
- Как меняется клиентская коммуникация в 2025 году и что с этим делать бизнесу
- (Не) безопасный дайджест: БД-экстраверты, новейший ИИ по секрету, поздняя карма от Intel
- Как бот привёл в 2,5 раза больше лидов для застройщика в Telegram Ads
- Spark_news: «Авито» представил сервис онлайн-бронирования авто для таксистов
- Атака через заброшенные бакеты
- Открытая платформа ИБ: как превратить инструментальный зоопарк в единую экосистему