Учимся на чужих ошибках: как прокачать SIEM с помощью machine learning
Привет, Хабр! В этой статье мы хотим поговорить о применении технологий машинного обучения (machine learning, ML) в SIEM-системах. Разберемся, с какими проблемами и ограничениями сталкиваются операторы, расскажем о нашем модуле BAD и о том, как реализованные в нем модели ML помогают вычислять хакеров. А еще заглянем в будущее и посмотрим, как машинное обучение может применяться в SIEM завтра. Все это ждет вас под катом!
Под кат →Источник: Хабрахабр
Похожие новости
- ИИ Агенты как новая киберугроза: бизнесы теряют деньги и данные, не понимая почему
- Архитектура PERA для построения промышленной сети
- Telegram Web съел 30% моего 16-ядерного процессора. Расследование странного поведения, или Призрак майнера в браузере
- Настройка межсетевого SSH-доступа в многосегментной сети Cisco и MikroTik в среде GNS3
- Рост продаж на маркетплейсах без демпинга: возможен или нет
- Vitamin.tools: Как быстро и эффективно находить сотрудников или собрать пожертвования через VK Ads: два кейса от клиента Vitamin.tools
- Лебедев Денис: Боты статистики в Telegram: что они умеют, кому подходят
- От BlueBorne до LE Secure: как Bluetooth выжил после самых громких дыр
- Ты не покупатель. Ты — герой мифа
- Андрей Кружков: Как я вывел сайт в ТОП за 3 месяца без копейки: честный SEO-план на коленке