Как DDoS-атаки стали для нас рутиной и как ML помогает их отражать
Несколько лет назад увидеть DDoS-атаку было целым событием. Если такое и случалось, то инцидент тщательно анализировала целая команда специалистов, а каждая извлечённая крупица информации использовалась для обучения моделей, формирования новых факторов и улучшения подходов для защиты от новых потенциальных атак.
Но постепенно число атак увеличивалось, и в какой-то момент отбить очередной DDoS стало обычным делом. Только за прошедший 2023 год мы в Яндексе отразили 1002 атаки. В этом нам помогло инхаус-решение — Антиробот, который работает на уровне L7 сетевой модели OSI.
В этом посте я хочу рассказать о том, как работает, на чём обучается Антиробот и с какими атаками ему приходится иметь дело. А ещё расскажу, почему важно системно подходить к анализу каждой атаки и как ML помогает отражать их.
Читать далееИсточник: Хабрахабр
Похожие новости
- ИИ Агенты как новая киберугроза: бизнесы теряют деньги и данные, не понимая почему
- Архитектура PERA для построения промышленной сети
- Telegram Web съел 30% моего 16-ядерного процессора. Расследование странного поведения, или Призрак майнера в браузере
- Настройка межсетевого SSH-доступа в многосегментной сети Cisco и MikroTik в среде GNS3
- Рост продаж на маркетплейсах без демпинга: возможен или нет
- Vitamin.tools: Как быстро и эффективно находить сотрудников или собрать пожертвования через VK Ads: два кейса от клиента Vitamin.tools
- Лебедев Денис: Боты статистики в Telegram: что они умеют, кому подходят
- От BlueBorne до LE Secure: как Bluetooth выжил после самых громких дыр
- Ты не покупатель. Ты — герой мифа
- Андрей Кружков: Как я вывел сайт в ТОП за 3 месяца без копейки: честный SEO-план на коленке