Deep Anomaly Detection

Все блоги / Про интернет 30 ноября 2020 401   

Детекция аномалий с помощью методов глубокого обучения


Выявление аномалий (или выбросов) в данных - задача, интересующая ученых и инженеров из разных областей науки и технологий. Хотя выявлением аномалий (объектов, подозрительно не похожих на основной массив данных) занимаются уже давно и первые алгоритмы были разработаны еще в 60-ых годах прошлого столетия, в этой области остается много неразрешенных вопросов и проблем, с которыми сталкиваются люди в таких сферах, как консалтинг, банковский скоринг, защита информации, финансовые операции и здравоохранение.

В связи с бурным развитием алгоритмов глубоко обучения за последние несколько лет было предложено много современных подходов к решению данной проблемы для различных видов исследуемых данных, будь то изображения, записи с камер видеонаблюдений, табличные данные (о финансовых операциях) и др.

Рассмотреть алгортмы Deep Learning далее
  • Оцените публикацию
  • 0

💬 Комментарии

В связи с новыми требованиями законодательства РФ (ФЗ-152, ФЗ «О рекламе») и ужесточением контроля со стороны РКН, мы отключили систему комментариев на сайте.

🔒 Важно Теперь мы не собираем и не храним ваши персональные данные — даже если очень захотим.

💡 Хотите обсудить материал?

Присоединяйтесь к нашему Telegram-каналу:

https://t.me/blogssmartz

Нажмите кнопку ниже — и вы сразу попадёте в чат с комментариями

Похожие публикации

Архив публикаций