Редакция Spark.ru: Какие Python-библиотеки мы используем в работе и ИИ

Все блоги / Про интернет 19 августа 2020 237   
Telegram-канал «Новое электричество» рассказал о самых полезных библиотеках, которые используют для сбора и обработки данных и других целей при работе с искусственным интеллектом. Практически каждый, кто погружается в тему Искусственного интеллекта, неизбежно сталкивается с Питоном. Питон стал настоящим AI-хабом, позволяющим относительно легко пользоваться множеством существующих методов и моделей. Мы не канал для программистов, да и о Питоне много чего написано, так что для нас эта тема не была в центре внимания. Тем не менее различные библиотеки регулярно всплывали в наших постах. И мы решили собрать в одном посте информацию об основных библиотеках Питона, используемых для работы с Искусственным интеллектом. Только о тех, которые сами используем. Сначала библиотеки, полезные для сбора и обработки данных: Beautiful Soup. Очень удобная и простая библиотека для веб-скрэйпинга. Во многих случаях веб-скрэйпинг — единственный доступный вариант поиска данных для машинного обучения и в таком случае Суп очень пригодится. Pandas. Этой статистической библиотеке посвящаются даже целые каналы. Она действительно включает в себя массу возможностей, быстра (большая часть кода написана на C, на медленном Питоне тонкая оболочка) и относительно проста в использовании. Пандас очень хорошо соединяется с библиотеками для AI — многие из них допускают прямое использование объектов Пандас для обучения. NLTK («Natural Language Toolkit»). Как следует из названия, обширная библиотека различных языковых методов. Позволяет выполнять первичную обработку текстов для обучения («preprocessing») — токенизацию, стемминг, лемматизацию, определение части речи, и.т.д., а также решать многие другие задачи. У NLTK есть конкурент — библиотека SpaCy. В большой части функционалы двух библиотек совпадают. На тему их различий и сравнения производительности много чего написано, заинтересованные читатели могут легко найти информацию. Теперь собственно AI-библиотеки: Sklearn («scikit-learn»). Классическая библиотека, содержащая большое количество методов машинного обучения. Фактически является стандартом для всего, что не является «глубоким обучением». Кроме собственно методов обучения есть много чего еще — векторизация, встроенные методы первичной обработки, анализа результатов. Tensorflow. Стандарт глубокого обучения. Мы подробно писали о данной библиотеке. Сам Tensorflow в первую очередь отличается возможностью быстрых матричных вычислений, что критично для скорости глубокого обучения. Библиотека Keras, которая позволяет создавать и обучать нейронные сети, сейчас фактически является частью Tensorflow. Gensim. Специализированная библиотека для машинного обучения в области обработки естественного языка. Содержит большое количество предобученных моделей. Как обычно, проста в использовании. Bert. Могучий трансформер разработанный Google, позволяющий во многих случаях получить высокую точность с минимальной адаптацией к специфике языковой задачи. Для использования Bert скорей всего придется установить несколько дополнительных библиотек. Но это совсем небольшая цена за возможности, которые дает модель! В заключение хочется обратится к не-программистам. Освоить Питон правда не очень сложно, намного проще, чем возможно вы себе представляете. Так что если кого-то гложет тайное желание создать собственный AI, да или просто написать первый код в своей жизни не сдерживайте себя! Тем более, качественных курсов Питона полно, на самых разных площадках (Coursera, Codecademy, Udemy, Яндекс. Академия и масса других). Источник Читайте также: Конструктор стартапов: как четыре энтузиаста автоматизируют работу над продуктом Как небольшая компания из России помогает армии США, Google и UEFA моделировать реальный мир Как житель Серпухова создает российский рынок каноэ
  • Оцените публикацию
  • 0

Похожие публикации

@
  • bowtiesmilelaughingblushsmileyrelaxedsmirk
    heart_eyeskissing_heartkissing_closed_eyesflushedrelievedsatisfiedgrin
    winkstuck_out_tongue_winking_eyestuck_out_tongue_closed_eyesgrinningkissingstuck_out_tonguesleeping
    worriedfrowninganguishedopen_mouthgrimacingconfusedhushed
    expressionlessunamusedsweat_smilesweatdisappointed_relievedwearypensive
    disappointedconfoundedfearfulcold_sweatperseverecrysob
    joyastonishedscreamtired_faceangryragetriumph
    sleepyyummasksunglassesdizzy_faceimpsmiling_imp
    neutral_faceno_mouthinnocent

Архив публикаций